Source code for bambi.models

# pylint: disable=no-name-in-module
# pylint: disable=too-many-lines
import re
import logging
from copy import deepcopy

import numpy as np
import pandas as pd
import pymc3 as pm

from arviz.plots import plot_posterior
from arviz.data import from_dict
from numpy.linalg import matrix_rank
from formulae import design_matrices

from .backends import PyMC3BackEnd
from .priors import Prior, PriorFactory, PriorScaler, Family
from .terms import ResponseTerm, Term, GroupSpecificTerm
from .utils import listify, extract_family_prior, link_match_family
from .version import __version__

_log = logging.getLogger("bambi")


[docs]class Model: """Specification of model class. Parameters ---------- formula : str A model description written in model formula language. data : DataFrame or str The dataset to use. Either a pandas ``DataFrame``, or the name of the file containing the data, which will be passed to ``pd.read_csv()``. family : str or Family A specification of the model family (analogous to the family object in R). Either a string, or an instance of class ``priors.Family``. If a string is passed, a family with the corresponding name must be defined in the defaults loaded at ``Model`` initialization.Valid pre-defined families are ``'gaussian'``, ``'bernoulli'``, ``'poisson'``, ``'gamma'``, ``'wald'``, and ``'negativebinomial'``. Defaults to ``'gaussian'``. priors : dict Optional specification of priors for one or more terms. A dictionary where the keys are the names of terms in the model, 'common' or 'group_specific' and the values are either instances of class ``Prior`` or ``int``, ``float``, or ``str`` that specify the width of the priors on a standardized scale. link : str The model link function to use. Can be either a string (must be one of the options defined in the current backend; typically this will include at least ``'identity'``, ``'logit'``, ``'inverse'``, and ``'log'``), or a callable that takes a 1D ndarray or theano tensor as the sole argument and returns one with the same shape. categorical : str or list The names of any variables to treat as categorical. Can be either a single variable name, or a list of names. If categorical is ``None``, the data type of the columns in the ``DataFrame`` will be used to infer handling. In cases where numeric columns are to be treated as categoricals (e.g., group specific factors coded as numerical IDs), explicitly passing variable names via this argument is recommended. dropna : bool When ``True``, rows with any missing values in either the predictors or outcome are automatically dropped from the dataset in a listwise manner. auto_scale : bool If ``True`` (default), priors are automatically rescaled to the data (to be weakly informative) any time default priors are used. Note that any priors explicitly set by the user will always take precedence over default priors. default_priors : dict or str An optional specification of the default priors to use for all model terms. Either a dictionary containing named distributions, families, and terms (see the documentation in ``priors.PriorFactory`` for details), or the name of a JSON file containing the same information. noncentered : bool If ``True`` (default), uses a non-centered parameterization for normal hyperpriors on grouped parameters. If ``False``, naive (centered) parameterization is used. taylor : int Order of Taylor expansion to use in approximate variance when constructing the default priors. Should be between 1 and 13. Lower values are less accurate, tending to undershoot the correct prior width, but are faster to compute and more stable. Odd-numbered values tend to work better. Defaults to 5 for Normal models and 1 for non-Normal models. Values higher than the defaults are generally not recommended as they can be unstable. """ # pylint: disable=too-many-instance-attributes def __init__( self, formula=None, data=None, family="gaussian", priors=None, link=None, categorical=None, dropna=False, auto_scale=True, default_priors=None, noncentered=True, taylor=None, ): # attributes that are set later self.terms = {} self.dm_statistics = None # build() self.built = False # build() self._backend_name = None # build() will loop over this, calling _set_priors() self._added_priors = {} self._design = None self.formula = None self.response = None # _add_response() self.family = None # _add_response() self.backend = None # _set_backend() self.auto_scale = auto_scale self.dropna = dropna self.taylor = taylor self.noncentered = noncentered # Read and clean data if isinstance(data, str): data = pd.read_csv(data, sep=None, engine="python") elif not isinstance(data, pd.DataFrame): raise ValueError("data must be a string with a path to a .csv or a pandas DataFrame.") # To avoid SettingWithCopyWarning when converting object columns to category data._is_copy = False # Object columns converted to category by default. obj_cols = data.select_dtypes(["object"]).columns data[obj_cols] = data[obj_cols].apply(lambda x: x.astype("category")) # Explicitly convert columns to category if desired--though this # can also be done within the formula using C(). if categorical is not None: data = data.copy() cats = listify(categorical) data[cats] = data[cats].apply(lambda x: x.astype("category")) self.data = data # Handle priors if priors is None: priors = {} else: priors = deepcopy(priors) self.default_priors = PriorFactory(default_priors) # Obtain design matrices and related objects. na_action = "drop" if dropna else "error" if formula is not None: self.formula = formula self._design = design_matrices(formula, data, na_action, eval_env=1) else: raise ValueError("Can't instantiate a model without a model formula.") if self._design.response is not None: _family = family.name if isinstance(family, Family) else family priors_ = extract_family_prior(family, priors) if priors_ and self._design.common: conflicts = [name for name in priors_ if name in self._design.common.terms_info] if conflicts: raise ValueError( f"The prior name for {', '.join(conflicts)} conflicts with the name of a " "parameter in the response distribution.\n" "Please rename the term(s) to prevent an unexpected behaviour." ) self._add_response(self._design.response, family, link, priors_) else: raise ValueError( "No outcome variable is set! " "Please specify an outcome variable using the formula interface." ) if self._design.common: self._add_common(self._design.common, priors) if self._design.group: self._add_group_specific(self._design.group, priors) # Build priors self._build_priors()
[docs] def fit( self, omit_offsets=True, backend="pymc", **kwargs, ): """Fit the model using the specified backend. Parameters ---------- omit_offsets: bool Omits offset terms in the ``InferenceData`` object when the model includes group specific effects. Defaults to ``True``. backend : str The name of the backend to use. Currently only ``'pymc'`` backend is supported. """ # There's a problem if we pretend to move .build() to instantiation # We would have to assume the backend, which is fine now since we're using PyMC3. # Nevermind, prior scaling can be outside .build() bc the backend is not needed!! if backend is None: backend = "pymc" if self._backend_name is None else self._backend_name if not self.built or backend != self._backend_name: self.build(backend) self._backend_name = backend # Tell user which event is being modeled if self.family.name == "bernoulli": _log.info( "Modeling the probability that %s==%s", self.response.name, str(self.response.success_event), ) return self.backend.run(omit_offsets=omit_offsets, **kwargs)
[docs] def build(self, backend="pymc"): """Set up the model for sampling/fitting. Performs any steps that require access to all model terms (e.g., scaling priors on each term), then calls the backend's ``build()`` method. Parameters ---------- backend : str The name of the backend to use for model fitting. Currently only ``'pymc'`` is supported. """ # Check for backend if backend is None: if self._backend_name is None: raise ValueError( "No backend was passed or set in the Model; did you forget to call fit()?" ) backend = self._backend_name self._set_backend(backend) self.backend.build(self) self.built = True
[docs] def set_priors(self, priors=None, common=None, group_specific=None, match_derived_names=True): """Set priors for one or more existing terms. Parameters ---------- priors : dict Dictionary of priors to update. Keys are names of terms to update; values are the new priors (either a ``Prior`` instance, or an int or float that scales the default priors). Note that a tuple can be passed as the key, in which case the same prior will be applied to all terms named in the tuple. common : Prior, int, float or str A prior specification to apply to all common terms included in the model. group_specific : Prior, int, float or str A prior specification to apply to all group specific terms included in the model. match_derived_names : bool If ``True``, the specified prior(s) will be applied not only to terms that match the keyword exactly, but to the levels of group specific effects that were derived from the original specification with the passed name. For example, ``priors={'condition|subject':0.5}`` would apply the prior to the terms with names ``'1|subject'``, ``'condition[T.1]|subject'``, and so on. If ``False``, an exact match is required for the prior to be applied. """ # save arguments to pass to _set_priors() at build time kwargs = dict( zip( ["priors", "common", "group_specific", "match_derived_names"], [priors, common, group_specific, match_derived_names], ) ) self._added_priors.update(kwargs) # After updating, we need to rebuild priors. # There is redundancy here, so there's place for performance improvements. self._build_priors() self.built = False
def _set_backend(self, backend): backend = backend.lower() if backend.startswith("pymc"): self.backend = PyMC3BackEnd() else: raise ValueError("At the moment, only the PyMC3 backend is supported.") self._backend_name = backend def _build_priors(self): """Carry out all operations related to the construction and/or scaling of priors.""" # set custom priors self._set_priors(**self._added_priors) # prepare all priors for name, term in self.terms.items(): type_ = ( "intercept" if name == "Intercept" else "group_specific" if self.terms[name].group_specific else "common" ) term.prior = self._prepare_prior(term.prior, type_) # Only compute the mean stats if there are multiple terms in the model terms = [t for t in self.common_terms.values() if t.name != "Intercept"] if len(self.common_terms) > 1: x_matrix = [pd.DataFrame(x.data, columns=x.levels) for x in terms] x_matrix = pd.concat(x_matrix, axis=1) self.dm_statistics = {"mean_x": x_matrix.mean(axis=0)} # throw informative error message if any categorical predictors have 1 category num_cats = [x.data.size for x in self.common_terms.values()] if any(np.array(num_cats) == 0): raise ValueError("At least one categorical predictor contains only 1 category!") # only set priors if there is at least one term in the model if self.terms: # Get and scale default priors if none are defined yet if self.taylor is not None: taylor = self.taylor else: taylor = 5 if self.family.name == "gaussian" else 1 scaler = PriorScaler(self, taylor=taylor) scaler.scale() def _set_priors(self, priors=None, common=None, group_specific=None, match_derived_names=True): """Internal version of ``set_priors()``, with same arguments. Runs during ``Model._build_priors()``. """ targets = {} if common is not None: targets.update({name: common for name in self.common_terms.keys()}) if group_specific is not None: targets.update({name: group_specific for name in self.group_specific_terms.keys()}) if priors is not None: # Update priors related to nuisance parameters of response distribution priors_ = extract_family_prior(self.family, priors) if priors_: # Remove keys passed to the response. for key in priors_: priors.pop(key) self.response.prior.args.update(priors_) # Prepare priors for explanatory terms. for k, prior in priors.items(): for name in listify(k): term_names = list(self.terms.keys()) msg = f"No terms in model match {name}." if name not in term_names: terms = self._match_derived_terms(name) if not match_derived_names or terms is None: raise ValueError(msg) for term in terms: targets[term.name] = prior else: targets[name] = prior # Set priors for explanatory terms. for name, prior in targets.items(): self.terms[name].prior = prior def _prepare_prior(self, prior, _type): """Helper function to correctly set default priors, auto scaling, etc. Parameters ---------- prior : Prior object, or float, or None. _type : string accepted values are: ``'intercept'``, ``'common'``, or ``'group_specific'``. """ if prior is None and not self.auto_scale: prior = self.default_priors.get(term=_type + "_flat") if isinstance(prior, Prior): prior._auto_scale = False # pylint: disable=protected-access else: _scale = prior prior = self.default_priors.get(term=_type) prior.scale = _scale if prior.scale is not None: prior._auto_scale = False # pylint: disable=protected-access return prior def _add_response(self, response, family="gaussian", link=None, priors=None): """Add a response (or outcome/dependent) variable to the model. Parameters ---------- response : formulae.ResponseVector An instance of ``formulae.ResponseVector`` as returned by ``formulae.design_matrices()``. family : str or Family A specification of the model family (analogous to the family object in R). Either a string, or an instance of class ``priors.Family``. If a string is passed, a family with the corresponding name must be defined in the defaults loaded at Model initialization. Valid pre-defined families are ``'gaussian'``, ``'bernoulli'``, ``'poisson'``, ``'gamma'``, ``'wald'``, and ``'negativebinomial'``. Defaults to ``'gaussian'``. link : str The model link function to use. Can be either a string (must be one of the options defined in the current backend; typically this will include at least ``'identity'``, ``'logit'``, ``'inverse'``, and ``'log'``), or a callable that takes a 1D ndarray or theano tensor as the sole argument and returns one with the same shape. priors : dict Optional dictionary with specification of priors for the parameters in the family of the response. Keys are names of other parameters than the mean in the family (i.e. they cannot be equal to family.parent) and values can be an instance of class ``Prior``, a numeric value, or a string describing the width. In the numeric case, the distribution specified in the defaults will be used, and the passed value will be used to scale the appropriate variance parameter. For strings (e.g., ``'wide'``, ``'narrow'``, ``'medium'``, or ``'superwide'``), predefined values will be used. """ if isinstance(family, str): family = self.default_priors.get(family=family) if family.name == "gamma": # Drop 'beta' param. Should be handled better in the future. family.prior.args.pop("beta") elif not isinstance(family, Family): raise ValueError("family must be a string or a Family object.") self.family = family # Override family's link if another is explicitly passed if link is not None: if link_match_family(link, family.name): self.family._set_link(link) # pylint: disable=protected-access else: raise ValueError(f"Link {link} cannot be used with family {family.name}") prior = self.family.prior # not None when user passes priors for nuisance parameters, either for built-in familes or # for custom families. if priors is not None: prior.args.update(priors) if self.family.name == "gaussian": if priors is None: prior.update( sigma=Prior("HalfStudentT", nu=4, sigma=np.std(response.design_vector)) ) if response.refclass is not None and self.family.name != "bernoulli": raise ValueError("Index notation for response only available for 'bernoulli' family") self.response = ResponseTerm(response, prior, self.family.name) self.built = False def _add_common(self, common, priors): """Add common (or fixed) terms to the model. Parameters ---------- common : formulae.CommonEffectsMatrix Representation of the design matrix for the common effects of a model. It contains all the necessary information to build the ``Term`` objects associated with each common term in the model. priors : dict Optional specification of priors for one or more terms. A dictionary where the keys are any of the names of the common terms in the model or 'common' and the values are either instances of class ``Prior`` or ``int``, ``float``, or ``str`` that specify the width of the priors on a standardized scale. """ if matrix_rank(common.design_matrix) < common.design_matrix.shape[1]: raise ValueError( "Design matrix for common effects is not full-rank. " "Bambi does not support sparse settings yet." ) for name, term in common.terms_info.items(): data = common[name] prior = priors.pop(name, priors.get("common", None)) if isinstance(prior, Prior): any_hyperprior = any(isinstance(x, Prior) for x in prior.args.values()) if any_hyperprior: raise ValueError( f"Trying to set hyperprior on '{name}'. " "Can't set a hyperprior on common effects." ) self.terms[name] = Term(name, term, data, prior) def _add_group_specific(self, group, priors): """Add group-specific (or random) terms to the model. Parameters ---------- group : formulae.GroupEffectsMatrix Representation of the design matrix for the group specific effects of a model. It contains all the necessary information to build the ``GroupSpecificTerm`` objects associated with each group-specific term in the model. priors : dict Optional specification of priors for one or more terms. A dictionary where the keys are any of the names of the group-specific terms in the model or 'group_specific' and the values are either instances of class ``Prior`` or ``int``, ``float``, or ``str`` that specify the width of the priors on a standardized scale. """ for name, term in group.terms_info.items(): data = group[name] prior = priors.pop(name, priors.get("group_specific", None)) self.terms[name] = GroupSpecificTerm(name, term, data, prior) def _match_derived_terms(self, name): """Return all (group_specific) terms whose named are derived from the specified string. For example, ``'condition|subject'`` should match the terms with names ``'1|subject'``, ``'condition[T.1]|subject'``, and so on. Only works for strings with grouping operator ``('|')``. """ if "|" not in name: return None patt = r"^([01]+)*[\s\+]*([^\|]+)*\|(.*)" intcpt, pred, grpr = re.search(patt, name).groups() intcpt = f"1|{grpr}" if not pred: return [self.terms[intcpt]] if intcpt in self.terms else None source = f"{pred}|{grpr}" found = [ t for (n, t) in self.terms.items() if n == intcpt or re.sub(r"(\[.*?\])", "", n) == source ] # If only the intercept matches, return None, because we want to err # on the side of caution and not consider '1|subject' to be a match for # 'condition|subject' if no slopes are found (e.g., the intercept could # have been set by some other specification like 'gender|subject'). return found if found and (len(found) > 1 or found[0].name != intcpt) else None
[docs] def plot_priors( self, draws=5000, var_names=None, random_seed=None, figsize=None, textsize=None, hdi_prob=None, round_to=2, point_estimate="mean", kind="kde", bins=None, omit_offsets=True, omit_group_specific=True, ax=None, ): """ Samples from the prior distribution and plots its marginals. Parameters ---------- draws : int Number of draws to sample from the prior predictive distribution. Defaults to 5000. var_names : str or list A list of names of variables for which to compute the posterior predictive distribution. Defaults to both observed and unobserved RVs. random_seed : int Seed for the random number generator. figsize: tuple Figure size. If ``None`` it will be defined automatically. textsize: float Text size scaling factor for labels, titles and lines. If ``None`` it will be autoscaled based on ``figsize``. hdi_prob: float Plots highest density interval for chosen percentage of density. Use ``'hide'`` to hide the highest density interval. Defaults to 0.94. round_to: int Controls formatting of floats. Defaults to 2 or the integer part, whichever is bigger. point_estimate: str Plot point estimate per variable. Values should be ``'mean'``, ``'median'``, ``'mode'`` or ``None``. Defaults to ``'auto'`` i.e. it falls back to default set in ArviZ's rcParams. kind: str Type of plot to display (``'kde'`` or ``'hist'``) For discrete variables this argument is ignored and a histogram is always used. bins: integer or sequence or 'auto' Controls the number of bins, accepts the same keywords ``matplotlib.hist()`` does. Only works if ``kind == hist``. If ``None`` (default) it will use ``auto`` for continuous variables and ``range(xmin, xmax + 1)`` for discrete variables. omit_offsets: bool Whether to omit offset terms in the plot. Defaults to ``True``. omit_group_specific: bool Whether to omit group specific effects in the plot. Defaults to ``True``. ax: numpy array-like of matplotlib axes or bokeh figures A 2D array of locations into which to plot the densities. If not supplied, ArviZ will create its own array of plot areas (and return it). **kwargs Passed as-is to ``plt.hist()`` or ``plt.plot()`` function depending on the value of ``kind``. Returns ------- axes: matplotlib axes or bokeh figures """ if not self.built: raise ValueError( "Cannot plot priors until model is built!! " "Call .build() to build the model or .fit() to build and sample from the posterior." ) unobserved_rvs_names = [] flat_rvs = [] for unobserved in self.backend.model.unobserved_RVs: if "Flat" in unobserved.__str__(): flat_rvs.append(unobserved.name) else: unobserved_rvs_names.append(unobserved.name) if var_names is None: var_names = pm.util.get_default_varnames( unobserved_rvs_names, include_transformed=False ) else: flat_rvs = [fv for fv in flat_rvs if fv in var_names] var_names = [vn for vn in var_names if vn not in flat_rvs] if flat_rvs: _log.info( "Variables %s have flat priors, and hence they are not plotted", ", ".join(flat_rvs) ) if omit_offsets: omitted = [f"{rt}_offset" for rt in self.group_specific_terms] var_names = [vn for vn in var_names if vn not in omitted] if omit_group_specific: omitted = list(self.group_specific_terms) var_names = [vn for vn in var_names if vn not in omitted] axes = None if var_names: pps = self.prior_predictive(draws=draws, var_names=var_names, random_seed=random_seed) axes = plot_posterior( pps, group="prior", figsize=figsize, textsize=textsize, hdi_prob=hdi_prob, round_to=round_to, point_estimate=point_estimate, kind=kind, bins=bins, ax=ax, ) return axes
[docs] def prior_predictive(self, draws=500, var_names=None, omit_offsets=True, random_seed=None): """ Generate samples from the prior predictive distribution. Parameters ---------- draws : int Number of draws to sample from the prior predictive distribution. Defaults to 500. var_names : str or list A list of names of variables for which to compute the posterior predictive distribution. Defaults to both observed and unobserved RVs. random_seed : int Seed for the random number generator. Returns ------- InferenceData ``InferenceData`` object with the groups `prior`, ``prior_predictive`` and ``observed_data``. """ if var_names is None: variables = self.backend.model.unobserved_RVs + self.backend.model.observed_RVs variables_names = [v.name for v in variables] var_names = pm.util.get_default_varnames(variables_names, include_transformed=False) if omit_offsets: offset_vars = [f"{rt}_offset" for rt in self.group_specific_terms] var_names = [vn for vn in var_names if vn not in offset_vars] pps_ = pm.sample_prior_predictive( samples=draws, var_names=var_names, model=self.backend.model, random_seed=random_seed ) # pps_ keys are not in the same order as `var_names` because `var_names` is converted # to set within pm.sample_prior_predictive() pps = {name: pps_[name] for name in var_names} response_name = self.response.name if response_name in pps: prior_predictive = {response_name: np.moveaxis(pps.pop(response_name), 2, 0)} observed_data = {response_name: self.response.data.squeeze()} else: prior_predictive = {} observed_data = {} prior = {k: v[np.newaxis] for k, v in pps.items()} idata = from_dict( prior_predictive=prior_predictive, prior=prior, observed_data=observed_data, coords=self.backend.model.coords, # new line attrs={ "inference_library": self.backend.name, "inference_library_version": self.backend.name, "modeling_interface": "bambi", "modeling_interface_version": __version__, }, ) return idata
[docs] def posterior_predictive( self, idata, draws=500, var_names=None, inplace=True, random_seed=None ): """ Generate samples from the posterior predictive distribution. Parameters ---------- idata : InfereceData ``InfereceData`` with samples from the posterior distribution. draws : int Number of draws to sample from the prior predictive distribution. Defaults to 500. var_names : str or list A list of names of variables for which to compute the posterior predictive distribution. Defaults to both observed and unobserved RVs. inplace : bool If ``True`` it will add a ``posterior_predictive`` group to idata, otherwise it will return a copy of idata with the added group. If ``True`` and idata already have a ``posterior_predictive`` group it will be overwritten. random_seed : int Seed for the random number generator. Returns ------- None or InferenceData When ``inplace=True`` add ``posterior_predictive`` group to idata and return ``None``. Otherwise a copy of idata with a ``posterior_predictive`` group. """ if var_names is None: variables = self.backend.model.observed_RVs variables_names = [v.name for v in variables] var_names = pm.util.get_default_varnames(variables_names, include_transformed=False) pps = pm.sample_posterior_predictive( trace=idata, samples=draws, var_names=var_names, model=self.backend.model, random_seed=random_seed, ) if not inplace: idata = deepcopy(idata) if "posterior_predictive" in idata: del idata.posterior_predictive idata.add_groups( {"posterior_predictive": {k: v.squeeze()[np.newaxis] for k, v in pps.items()}} ) getattr(idata, "posterior_predictive").attrs["modeling_interface"] = "bambi" getattr(idata, "posterior_predictive").attrs["modeling_interface_version"] = __version__ if inplace: return None else: return idata
[docs] def graph(self, formatting="plain", name=None, figsize=None, dpi=300, fmt="png"): """ Produce a graphviz Digraph from a Bambi model. Requires graphviz, which may be installed most easily with ``conda install -c conda-forge python-graphviz`` Alternatively, you may install the ``graphviz`` binaries yourself, and then ``pip install graphviz`` to get the python bindings. See http://graphviz.readthedocs.io/en/stable/manual.html for more information. Parameters ---------- formatting : str One of ``'plain'`` or ``'plain_with_params'``. Defaults to ``'plain'``. name : str Name of the figure to save. Defaults to None, no figure is saved. figsize : tuple Maximum width and height of figure in inches. Defaults to None, the figure size is set automatically. If defined and the drawing is larger than the given size, the drawing is uniformly scaled down so that it fits within the given size. Only works if ``name`` is not None. dpi : int Point per inch of the figure to save. Defaults to 300. Only works if ``name`` is not None. fmt : str Format of the figure to save. Defaults to ``'png'``. Only works if ``name`` is not None. """ if self.backend is None: raise ValueError("The model is empty, please define a Bambi model") graphviz = pm.model_to_graphviz(model=self.backend.model, formatting=formatting) width, height = (None, None) if figsize is None else figsize if name is not None: graphviz_ = graphviz.copy() graphviz_.graph_attr.update(size=f"{width},{height}!") graphviz_.graph_attr.update(dpi=str(dpi)) graphviz_.render(filename=name, format=fmt, cleanup=True) return graphviz
def _get_pymc_coords(self): # categorical attribute is important because of this coordinates stuff common_terms = { k + "_dim_0": v.cleaned_levels for k, v in self.common_terms.items() if v.categorical } # Include all group specific terms group_specific_terms = { k + "_dim_0": v.cleaned_levels for k, v in self.group_specific_terms.items() } return {**common_terms, **group_specific_terms} def __str__(self): priors = [f" {term.name} ~ {term.prior}" for term in self.terms.values()] # Priors for nuisance parameters, i.e., standard deviation in normal linear model priors_extra_params = [ f" {k} ~ {v}" for k, v in self.family.prior.args.items() if k not in ["observed", self.family.parent] ] priors += priors_extra_params str_list = [ f"Formula: {self.formula}", f"Family name: {self.family.name.capitalize()}", f"Link: {self.family.link}", f"Observations: {self.response.data.shape[0]}", "Priors:", "\n".join(priors), ] if self.backend and self.backend.fit: extra_foot = "------\n" extra_foot += "* To see a plot of the priors call the .plot_priors() method.\n" extra_foot += "* To see a summary or plot of the posterior pass the object returned" extra_foot += " by .fit() to az.summary() or az.plot_trace()\n" str_list += [extra_foot] return "\n".join(str_list) def __repr__(self): return self.__str__() @property def term_names(self): """Return names of all terms in order of addition to model.""" return list(self.terms.keys()) @property def common_terms(self): """Return dict of all and only common effects in model.""" return {k: v for (k, v) in self.terms.items() if not v.group_specific} @property def group_specific_terms(self): """Return dict of all and only group specific effects in model.""" return {k: v for (k, v) in self.terms.items() if v.group_specific}